

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : PQ (18EE0227) Year & Sem: IV-B.Tech & I-Sem Course & Branch: B.Tech - EEE Regulation: R18

<u>UNIT –I</u> Introduction

1.	What is power quality? Why we are concern about power quality?	[CO1]	[L1]	10M
2.	Explain about the power quality evaluation procedure.	[CO1]	[L1]	10M
3.	Classify the different types of power quality issues.	[CO]	[L2]	10M
4.	a) What are the types of wave form distortion?	[CO1]	[L1]	5M
	b) Write a short note on voltage imbalance	[CO1]	[L2]	5M
5.	What are the power quality standards?	[CO2]	[L1]	10M
6.	What are the responsibilities of end users and suppliers of electric	power s	supply?	
		[CO1]	[L1]	10M
7.	Draw and explain the CBEMA curve	[CO1]	[L1]	10M
8.	Draw and explain ITI curve	[CO1]	[L2]	10M
9.	Explain the power quality terminology	[CO2]	[L1]	10M
10.	a) Define notching	[CO1]	[L2]	2M
	b) What is ment by dc offset	[CO1]	[L1]	2M
	c) Define coupling	[CO1]	[L2]	2M
	d) What is ment by surge	[CO1]	[L1]	2M
	e) Define flicker	[CO1]	[L2]	2M

<u>UNIT –II</u> <u>Power Quality disturbances</u>

1.	Draw and explain the impulsive and oscillatory transients	[CO2] [L1]	10M
2.	Mention the categories and characteristics of electromagnetic phenomena in J	power systems	s?
		[CO2] [L3]	10M
3.	What are the sources of transient over voltages? Explain clearly.	[CO2] [L2]	10M
4.	a) Explain the long duration voltage variations.	[CO2] [L2]	5M
	b) Explain the short duration voltage variation.	[CO2] [L1]	5M
5.	What are the principles of over voltage protection? Explain with diagram.	[CO2] [L1]	10M
6.	Classify the principles of regulating the voltage	[CO2] [L2]	10M
7.	Explain in detail the role of capacitors for the voltage regulation.	[CO2] [L1]	10M
8.	Explain the effect of line drop compensation on the voltage profile.	[CO2] [L1]	10M
9.	What are the conventional devices available for the voltage regulation?	[CO2] [L1]	10M
10.	a) Define oscillatory transient?	[CO2] [L1]	2M
	b) What is the main cause for impulsive transient?	[CO2] [L1]	2M
	c) Define Sag?	[CO2] [L1]	2M
	d) What is the frequency range and duration in medium frequency transient?	[CO2] [L2]	2M
	e) When an interruption occurs.	[CO2] [L2]	2M

<u>UNIT –III</u> <u>Fundamentals of harmonics and applied harmonics</u>

1.	What is harmonic distortion? Discuss about the voltage versus current di	stortion.	
		[CO2] [L2]	10M
2.	a) Write the impact of voltage distortion and current distortion.	[CO1] [L3]	5M
	b) Explain the commonly used indices for measuring of harmonic conter	it in the	
	waveform.	[CO1] [L1]	5M
3.	Explain the power system quantities under non sinusoidal condition.	[CO1] [L1]	10M
4.	What are the harmonics sources from commercial loads?	[CO2] [L2]	10M
5.	What are the harmonics sources from industrial loads?	[CO2] [L2]	10M
6.	Explain the brief description about the harmonic distortion evaluation.	[CO2] [L1]	10M
7.	Explain the principles of controlling harmonics.	[CO2] [L1]	10M
8.	Explain the various devices for the controlling of harmonics distortion.	[CO2] [L1]	10M
9.	What are effects of harmonics? Explain harmonic distortion evaluation p	procedure?	
		[CO2] [L2]	10M
10.	a) What is ment by harmonics?	[CO2] [L2]	2M
	b) What is percentage of fluorescent lighting in commercial loads?	[CO2] [L2]	2M
	c) Define THD	[CO2] [L2]	2M
	d) What is the purpose of line reactor?	[CO2] [L2]	2M
	e) What is ment by TDD?	[CO2] [L2]	2M

<u>UNIT –IV</u> Power quality monitoring

a) Write a short note on power quality monitoring standards.	[CO3] [L2]	5M
b) Write about any one power quality measurement equipment.	[CO3] [L2]	5M
Explain the various power quality monitoring considerations.	[CO3] [L1]	10M
Explain about various power quality measuring equipment.	[CO3] [L1]	10M
Explain the categories of instruments to consider for harmonic analysis.	[CO3] [L1]	10M
Explain about smart power quality monitors.	[CO3] [L1]	10M
Explain about the flicker meters.	[CO3] [L2]	10M
Explain the applications for system maintenance, operation and reliability.	[CO3] [L1]	10M
Explain about the permanent power quality monitoring equipment.	[CO3] [L1]	10M
Explain about the power quality bench marking.	[CO3] [L1]	10M
a) What is ment by true RMS?	[CO3] [L3]	2M
b) Define multimeter	[CO3] [L2]	2M
c) Why the flicker meter is need?	[CO3] [L2]	2M
d) What is revenue meters?	[CO3] [L3]	2M
e) What is purpose of digital fault recorders?	[CO3] [L2]	2M
	 b) Write about any one power quality measurement equipment. Explain the various power quality monitoring considerations. Explain about various power quality measuring equipment. Explain the categories of instruments to consider for harmonic analysis. Explain about smart power quality monitors. Explain about the flicker meters. Explain the applications for system maintenance, operation and reliability. Explain about the permanent power quality monitoring equipment. Explain about the power quality bench marking. a) What is ment by true RMS? b) Define multimeter c) Why the flicker meter is need? d) What is revenue meters? 	b) Write about any one power quality measurement equipment.[CO3] [L2]Explain the various power quality monitoring considerations.[CO3] [L1]Explain about various power quality measuring equipment.[CO3] [L1]Explain the categories of instruments to consider for harmonic analysis.[CO3] [L1]Explain about smart power quality monitors.[CO3] [L1]Explain about the flicker meters.[CO3] [L2]Explain the applications for system maintenance, operation and reliability.[CO3] [L1]Explain about the permanent power quality monitoring equipment.[CO3] [L1]Explain about the power quality bench marking.[CO3] [L1]a) What is ment by true RMS?[CO3] [L2]b) Define multimeter[CO3] [L2]c) Why the flicker meter is need?[CO3] [L2]d) What is revenue meters?[CO3] [L3]

<u>UNIT –V</u>

Power quality enhancement using custom power devices

1.	What is the need for current limiter? Discuss the operation of a Solid state	current	limiter	
		[CO4]	[L2]	10M
2.	What are the advantages of solid state current limiters compared to conver limiters? Discuss.	ntional c [CO4]		10M
3.	What are the advantages of static var compensators? Discuss the operation			
	Compensators?	[CO4]	[L2]	10M
4.	Draw and explain the schematic diagram of a right shunt UPQC?	[CO4]	[L3]	10M
5.	How UPQC protects the load from harmonic voltages? Discuss.	[CO4]	[L2]	10M
6.	Explain the solid transfer switch transfer with the transfer operation?	[CO4]	[L1]	10M
7.	Explain the Solid State Breaker principle of operation?	[CO4]	[L1]	10M
8	Draw and explain the schematic diagram Dynamic Voltage Restorer?	[CO4]	[L3]	10M
9.	Explain the principle of DVR operation used for sag mitigation?	[CO4]	[L1]	10M
10.	a)Give the list of two groups custom power devices?	[CO4]	[L1]	2M
	b)Give the complete classification of custom power devices?	[CO4]	[L1]	2M
	c)What is Static Current Limiter?	[CO4]	[L2]	2M
	d)What is Static Transfer Switch?	[CO4]	[L2]	2M
	e)What is Solid State Breaker?	[CO4]	[L2]	2M

Prepared by: **<u>B RAMESH</u>**

QUESTION BANK	2020
---------------	------

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : PQ (18EE0227) Year & Sem: IV-B.Tech & I-Sem **Course & Branch**: B.Tech - EEE **Regulation:** R18

<u>UNIT – I</u>

Introduction

1. A Manufacturer of load equipment may define pow	er quality has those characteristics of	the	
that enables the equipment to work properly.		[]
A) Power supply	B) Load		
C) Miss operation	D) Frequency		
2. Any power problem manifested in voltage, current	, or frequency deviations that result i	n	of
customer equipment.		[]
A) Failure or misoperation	B) voltage sag		
C) Voltage swells	D) frequency		
3. The current resulting from a short circuit causes the	Completely.	[]
A) Voltage to sag	B) voltage improvement		
C) Capacitive load	D) inductive load		
4. Distorted currents fromloads also	o distort the voltage as they pass thro	ugh the	e
system impedance.		[]
A) Capacitive	B) inductive		
C) Harmonic producing	D) voltage sag		
5. Sag is used as a synonym to the IEC term		[]
A) short circuit	B) dip		
C) Swell	D) voltage		
6. The term swell is introduced as an inverse to		[]
A) short circuit	B) Harmonics		
C) ANSI	D) dip		
7. A utility engineer may think of a surge as the transie	ent resulting from a lightning stroke	for whi	ich a -
is used for protection.		[]
A) surge arrester	B) Lightning phenomenon		
PRINCIPLES OF POWER QUALITY			Page 6

QUESTION BANK 2020 C) Circuit breaker D) isolator 8. An ------ is a sudden non – power frequency change in the steady state condition of voltage, current or both that is unidirectional in polarity. Γ 1 A) Short circuit B) surge C) Impulse transient D)open circuit 9. A transient with a primary frequency component less than 5 kHz, and a duration from 0.3 to 50ms, is considered a ----ſ 1 B) low frequency transient A) High frequency transient C) Medium frequency transient D) pulse width 10. Oscillatory transients with principal frequencies less than ------ can also be found on the distribution system.] ſ A) 50Hz B) 100Hz C) 150Hz D) 300Hz 11. Long-duration variations encompass root-mean square (rms) deviations at power frequencies for longer than ----ſ] A) 1min B) 2min C) 3min D) 5min 12. An -----is an increase in the rms ac voltage greater than 110 percent at the power frequency for a duration longer than 1 min.] A) Under voltage B) Over voltage C) Flicker D) None 13. An -----is a decrease in the rms ac voltage to less than 90 percent at the power frequency for a duration longer than 1 min 1 ſ A) Under voltage B) Over voltage C) Flicker D) None 14. An ----- occurs when the supply voltage or load current decreases to less than 0.1 pu for a period of time not exceeding 1 min. 1 ſ C)Swell D)None A) Interruption B)sag 15. A ----- is a decrease to between 0.1 and 0.9 pu in rms voltage or current at the power frequency for durations from 0.5 cycle to 1 min] [C) Swell A) Flicker B) Harmonics D) Sag 16. A ------ is defined as an increase to between 1.1 and 1.8 pu in rms voltage or current at the power frequency for durations from 0.5 cycle to 1 min. ſ] D) Sag A) Flicker B) Harmonics C) Swell 17. -----defined as the maximum deviation from the average of the three phase voltages or currents, divided by the average of the three phase voltages or currents, divided by the average of the three phase voltages or currents.] ſ A) Waveform distortion B) Voltage unbalance D) Notching C) Noise PRINCIPLES OF POWER QUALITY

Page 7

	QUESTION BANK 202	0
18 is defines as a steady state	eviation from an ideal sine wave of power	
frequency principally characterized by the spectra	_]
A) Waveform distortion C) Noise	B) Voltage unbalanceD) Notchi	
19. Voltages or currents having frequency compo which the supply system is designed to operate ar		ency]
20. Voltage sag is caused by	er harmonics D)All]
A) System faults	B) Load variations	
C) Starting of large motors 21. Unwanted electric signal with broad band is	D) A & B]
A) Notching B) DC offset C) N 22. The presence of DC in AC system is	ise D) Harmonics []
A) Notching B) DC offset C) No 23. Voltage fluctuations is sometimes called as	e D) Harmonics]
A) sag B)Swell C)Flick 24. The duration of voltage sag is A) 0.25cycle -0.5min	r D)Noise [B) 0.5cycle-1min]
C) 1cycle-1min 25. The duration of voltage swell is	D) None]
A) 0.25cycle -0.5min C) 1cycle-1min 26. Waveform distortion is	B) 0.5cycle-1min D) None []
A) Frequency variation	B) Steady state deviation	
C) A&B	D) None	
27. Endures are better informed about	[]
A) Sags B) Transients 28. The ultimate reason that we are concerned abo	C)A&B D)None t power quality is []
A) Technical valueC) A&B	B) Economic valueD) None	
29. Voltage fluctuations is also called as	[]
A) Flicker B) Surge 30. CBEMA curve is replaced by	C) Frequency variation D) None [C) CMT D) None]

QUESTION BA	NK 20	20
31. Interruptions occur due to	[]
A) Power system faults B)Equipment failure		
C)Control mal function D)All 32. Loads can exhibit continues rapid variations in load current magnitude results of	[]
A) FlickerB)SagC)SwellD)None33. The portion of CBEMA curve is adapted from	[]
A) IEEE B)IEC C)ICC D)IOC 34. Ratio between the peak value and RMS value of a periodic waveform	[]
A) Coupling B)Crest factor C)Distortion D)Deviation		
35. large current that load draws when initially turned on isA)ImpulseB)Crest factor C)CouplingD) inrush	[]
36. Power quality isqualityB)Current qualityA)Voltage qualityB)Current quality	[]
C)Frequency quality D)All		
37. ITI curve is applicable forA)120VoltsB)160VoltsC)180 VoltsD)100Volts	[]
38. A loss of equipment operation due to noise ,sag or interruptionA) DropoutB)DipC)DistortionD)Fault	[]
39. Fault generally refers to aon the power systemA)Open circuitB)Shot circuit	[]
C)A&B D)Flicker		
40.The systematic variations of the voltage envelop is called A)Fluctuations B)Deviations	[]
C)Distortions D)Frequency variations		

<u>UNIT –II</u> <u>Transients, short duration and long duration variations</u>

1 are used to pro- supports the voltage on the s		power to correct	the power factor, wh	ich reduces	s losse [es and]
A).circuit breakers	B).fuses	C) capacitors	D) surge arresters			
2. Newer high – energy MC	V arresters for	r low voltage app	lications can withstar	nd	[]
A) 2 to 4 kJ	B) 400kJ	C) 500kJ	D) 600kJ			
3. The initial transient frequ	ency is above	1.0 kHz and appe	ears as a small amour	nt of		on
the front of the waveform.					[]
A) hash	B)flash	C)dash	D)crash			
4. The main function of surg	,	,	·	that car	i appe	ear
between two points in the ci					[]
-			-		L	-
A) Power	B) voltag	ge C) current	D) frequency			
5 are	normally open	devices that cond	duct current during o	ver volta	ige	
transients.	J 1		C]]
			1			
A) bar-bar B) vo	· · · · · · · · · · · · · · · · · · ·	crow bar D)sc			г	1
6. An isolation transformer	r used to attent	uate			[]
A) High frequency		B) tran	sients stability			
C) Normal current		D) hig	h frequency noise and	d transients	8	
7combines	two surge supp	pressors and a low	v pass filter to prove	maximum	protec	ction.
					[]
A) Normal protector		B).hyl	brid protector			
C) Liquid protector		D) line	e projector			
8 0	can reduce the	capacitor switchi	ng transients.		[]
A) Linear resistors		B) Ca	rbon resistors			
C) Pre-insertion resi	stors		ansistors			
9. Popular strategy for reduc		· · · · · ·				
	C	Ĩ	C		[]
A) Closing breaker		B) circ	uit breaker			
C) Synchronous clo	sing breaker	D) line	e sectionalizes			
10. The transformer would l	have to be load	led approximately	y 20 to 25 percent of	resistive ed	quival	ent
load to limit Ferro resonanc	e over voltage	s toper	cent		[]
A) 10	B) 20	C) 125	D)	225		
	,	, -	,			
PRINCIPLES OF POWER QUA	ALI I Y					Page 10

			QUESTION BA	NK 2	020
11. Utilities generally try to maint the	ain the service vo	oltage supplied	to an end user withir	1 []
A) $+/2$ percent of nomin			cent of nominal		
C) +/_ 4 percent of nomina 12 The approach to flicker cousing			cent of nominal		
12. The approach to flicker causir	ig loads is to app	ly devices that a	are commonly caned	[]
A) Static var compensators		B) dynamic co	ompensators		
C) Series capacitors		D) none	ompensators		
13. Utility line voltage regulators	and substation L	TCS are relative	ely	[]
A) medium B)	high	C)A&B	D)slow		
14. Electronic tap switching regula	ators can also be	used to regulat	e	[]
A) current B))voltage	C)power	D)energy		
15. Magnetic synthesizers althoug	h intended for sh	ort duration vol	ltage	[]
A) swell B))sags	C)A&B	D)freque	ncy	
16.Motor generator sets are also u	ised for		_	[]
A) voltage sag B)	voltage swell	C)voltage reg	gulation D)comp	ensation	1
17. The line drop compensator sett	ings are called			[]
A)R&V B)V&I	C)P&V	D)R&X		
18.Capacitors may be used for vo	oltage regulation	on the power sy	ystem in	[]
A)Shunt configuration	B)se	ries configurati	ion		
C)Shunt or series configur	ration D)A	,B,&C			
19.Series capacitors cannot tolera		,_ ,		[]
A)fault current B)fault	voltage C)faul	timpedance	D)A&B		
20.Capacitor switching is source of	f			[]
A)transient B)noise	C)dist	ortion	D)flicker		
21.Lightning is main source of	,			[]
A)oscillatory transient		B)impulsive t	ransient		
B)harmonics		D)all			
22.clamping are used in circ	cuits			[]
A)A B)DC	C)A,E	3	D)none		
23.Impulsive transients are presen	ts in only	-directions		[1
1 1	2			L	-
A)positive or negative	B)positive	C)negative	D)all		
PRINCIPLES OF POWER QUALITY					Page 11

2020	TION BANK	QUES'			
]	[applications	vice in lightning	limiting de	4.Ballast is
	none	C)current D)r	B)impedance		A)voltage
]	[D)none	C)interruptions		ng is one of the nsient over vol	5.Capacitor switching A)trans
]	[andled by	ients are first h	6.High energy transie
	D)none	protector C)both	B) gap-type p	lter	A)low-pass filte
]	[0	rs are similar t	7.power conditioners
		B)isolation T/F D)none		ïlters	A)Low-pass file C)TVSS
]	[er bloks the	ne low pass filt	3. The inductor in the
	nts	B)low freq transie		ransients	A)High freq tra
		D)none			C)both
]	[called as). Transients is also c
	D) None	C) Voltage-variation	rge	on B) Su	A) Interruption
]	[is caused by	ltage variation). Short duration volta
	D) None	C) Load variation	vitching	nection B) Sw	A)Loose conne
]	[er _ load	os too low und	1. The Voltage drops
	D) None	C) Both	ght	B) Li	A) Heavy
]	[levice	e of isolation of	2. Which is example
	D) All	C) Motor Generator set	rro resonant t/f	B) Fe	a) Ups s/m
]	[on device	Voltage regulati	re efficient in	3. Which one is more
ons	witching solut	B) Electronic tap s D) none			A) Ferroresonar C) Magnetic sy
]	[rator set is	f motor – gene	4. The drawback of 1
	h	B) Losses are high		time is large	A) Response tir
		D) None			C) both
]]		e is zero at	ors, Voltage ris	5. In series capacitors
	D) None	C) both	ll load	B) ful	A) No load

			QUESTION BANK	c i	2020
36. In shunt capacitor,	% voltage rise is indepe	endent of		[]
A) load	B) supply	C) both	D) None		
37. In series capacitor	, the S/M losses are	_ than shut capacitor		[]
A) more	B) less	C) equal	D) none		
38. in cyclic Flicker is	a result of Voltage	fluctuation		[]
A) Periodic	B) Non periodic	C) Occasional	D) Non oc	casi	onal
39. Zig – Zag transfor	mers act like a filter to th	he zero sequence curr	ent by offering	[]
A) high impeda	ance path to neutral B) Low impedance pat	th to neutral		
C) Any of the	above D) None			
40. Notch filters can pr	rovide to harmonic s	suppression		[]
A) power facto)r	B) voltage			
C) Reactive po	wer	D) Active power			

				QUESTION BAN	K 20	20
	<u>UNIT –III</u> Fundamentals of harmonics and applied harmonics					
1	is the av	erage rate of delive	ery of energy.		[]
	A)active power E	-		· •	ied by a	a 1
•	A)active power B)reactive power	C)power facto	r D)apparent p	ower	-
3 neutral	become an in	nportant issue for g	rounded wye sys	tems with current flo	wing o [n the]
	A)fourth harmonics		B) Triple harm	nonics		
	C)fifth harmonics is a measu rm.	are of the effective	D) seventh harr value of the harm		a distoi	rted
	A)fifth harmonic C)total harmonic distort stinctive characteristic of urrent.		B)triplen harmo D) seventh har r supplies is a ve	monics	monic	content
	A) fifth B) are induce	seventh ed currents in a tran	C)third sformer caused b	D) ninth by the magnetic fluxe	s. []
	A)hysteresis losses		B)eddy current	losses		
	C) friction losses	t the motor termina	D)stay losses als is translated i	nto		
	the mot				[]
	A)eddy current losses		B)Harmonic flu	ixes		
	C) Power		D) stay losses			
8. The	typical range of frequence	cies for induction fu	irnaces is		[]
9	A) 150 to 1200 kHz B) is the only step requir		C)10Hz	D) 3000Hz	[]
10. A f	A) Rectification C) cyclo converters requency that is an intege	er multiple of the fu	B). inverterD) cyclo inveandamental frequencies		[]
	A) harmonic frequency	B) switching	C) transient	D)voltage		

			QUESTION BAN	K 20	020
11. Crest factor for sinusoi	dal wave is			[]
A) 1.123	B) 1.232	C) 1.343	D) 1.414		
12. The Voltage distortion	on transmission system	n is less than%		[]
A) 5%	B)10%	C) 1%	D) 15%		
13. Voltage distortion dep	pends on the current&			[]
A)Voltage	B)current	C) Frequency	D) Impedance	è	
14. Most common type of	passive filter is			[]
A) Single tuned fil	ter B) double tuned filte	er C) high pass filte	er D) none		
15. The current drawn by	the ferroresonant transfe	ormer increases from	m	[]
A) 0.5-2 A	B) 0.3-1 A	C) 0.2 -2 A	D) 0.4 -2 A		
16. The devices for contro	lling harmonic distortio	ons are		[]
A) Line reactor	B) capacitor banks	C) zigzag t/f's	D) All the abo	ve	
17 is practical	ly effective method for	the PWM type driv	es	[]
A) zigzag t/f's	B) Line react	tor C) filter	D) non	e	
18. Some impulse load lik	e rock crushers and tire	testers use		[]
A) Shunt capacitors	s B) shunt read	ctors C) series	reactors D) seri	es cap	pacitors
19. Which of the following	g device is a static var co	ompensator		[]
A) TCR	B) TSC	C) SSSC	D) A a	nd B	
20. In electronic tap-swite	hing regulators	are used		[]
A) SCR's	B) triacs	C) A or l	B D) Nor	ne	
21. Static Var compensato	ors can regulate the volta	age by		[]
A) Supply reactive	power B) consumes	reactive power C)	a or b D) non	e	
22. Due to the series capac	citors the voltage rise at	no-load is		[]
A) Minimum	B) zero	C) maxim	num D) non	e	
23. The percentage voltage	e rise at the capacitor is	maximum at		[]
A) full-load	B) light-load	c) no-loa	d D) all		

				QUESTIC	N BANK	2020	
24 Cannot provide reacti	ve power to the f	feeder l	oad			[]
A) Shunt capacitors	B) shunt reacto	ors	C) serie	s capacitors	D) None		
25. A typical 3% input choke can b	be reducing the h	armoni	c distorti	on		[]
A) 80-40%	B) 40-20%		C) 10-5	%	D) 50-40	%	
26. The devices for controlling har	monic distortions	s are				[]
A) Line reactor	B) capacitor ba	anks	C) zigza	ng t∕f's	D) All the	e above	ļ,
27. Harmonic control options consi	st of controlling	the har	monic inj	ection from		[]
A) Linear loadsC)Harmonic filters28. The total demand distortion is e	xpressed in term	s of the	D) any	near loads of the above		[]
A) Average demandC) demand factor29.The short circuit ratio used to demand factor	termine the limit	ts on	,	mum demand ation factor	1	[]
A) Harmonic study 30. The source of harmonic current	B) P C C s is too	C) T	D D	D) harmonio	c currents	[]
A) Low 31. Transformer connections can be	B) medium e employed to rec	C) gr duce ha		D) transien urrents in	ts	[]
A) 3 phase systems		B)1 p	bhase syst	tems			
C)2 phase systems 32. Harmonic problems on distribut	tion feeders often	, ,	y of the a only at	bove		[]
A) Light load 33. Which devices available to cont	B)half load trol harmonic dis	· ·	ıll load	D)one for	urth load	[]
 A)a capacitor bank 34. The product of RMS voltage an A) Active power 35. Power system freq is directly re 	B) Reactive po	d			e above D) None	[]
A) Power factor	B) Speed	C) Both		D) None		
36 Power system freq is directly rel A) Power factor	ated to B) Speed	C) Both		D) None	[]
37. Notch filters can provide to	harmonic suppre	ession				[]
A) power factor	B) voltage	C) Reactive	e power			
38. Capacitor voltage filers have _	on its output					[]
PRINCIPLES OF POWER QUALITY						Раз	ge 16

	QUESTION BANK	2020	
A) High pass filter	B) band pass filter		
C) low pass filter	D) band reject filter		
39. C- Filters are alternative to		[]
A) Low pass broad band filters	B) high pass filters		
C) Low pass filters	D) Pass filters		
40. The ration b/w the RMS value and the	e peak value of a pure sinusoidal waveform is	[]
A) 0.707 B) 1	.11 C) 1.5 D) 1.44		

<u>UNIT –IV</u> Power quality monitoring

1. Power quality monitoring programs are often dr	iven by the demand for	r improving th	e systen [n wide]
A)power quality performanceC) current quality performance2. The methods for characterizing yhe quality of a	B) voltage quality pe D)None c power are important f		[]
A)power disturbanceC) monitoring requirements	B) voltage di D) rms variations	sturbance		
3. Infracted meters can be very valuable in detection	ng loose connection ar	ıd	[]
A)insulators	B)semiconductors			
C)overheating conductors 4. Electrostatic discharge(E S D)can be an importa	D) A&B ant cause of power qual	ity problems ir	some t	ype of]
A)Electrical equipmentC) Electrical &Electronic equipment5. The rms value of a signal is a measure of the heat across a	B)Electronic equipm D)none ating that will result if t		npressec [1]
A)Inductive load B)capacitive load 6.Instruments in the disturbance analyser category		D)none	[]
A)Harmonic studyC) Harmonic analysis capabilities7.A simple portable meter for harmonic analysis is	B) Harmonic injectiD)any of the above	on	[]
A)practical B)ideal 8.Historically flicker has been measured using rms	C)A&B meters , load duty cycl	D)medium le, and a	[]
A)Flicker curve B) T H D	C)Load duty cycle	D)Measuring	flicker	
9.Monitoring of power quality on power systems o	ften requires transduce	ers to obtain ac	ceptable []
A)V & I signal levels C)E & I signal levels 10.Frequency response is particularly important for	B)V & P signal level D)A&B r transient and harmoni		[]
A)Distortion monitoring B)Signal levels	C) F T P	D)UCAMMS		

QUESTION BANK 2020 11. The ------ project defined several performance indices for evaluating the electric service quality.] A)EPRI RBM B) RVM C).RGM D)RRM 12. -----involves the placement of power quality Monitors on the system and characterization of the performance of the System. ſ 1 B) Collect RBX data A) Collect RVM data C)Collect power quality data D) collect RRM data 13.----could be based on past performance, a standard adopted By similar utilities, or a standard established by a professional.] Γ A)select EPRI RBM B) select the benchmark C)Select RVM D) RRM 14. IEEE Standard 1159-1995 defines a sustained interruption as a reduction in the rms voltage to less than ----- percent of nominal voltage for longer than 1 min. [1 B) 30 C) 40 D) 10 A) 20 15. A ----- is the maximum sum of sag score values allowable for a group of locations before compensation. Γ 1 A) sag score targets B) interruptions targets C) sag wind targets D) none of the above 16. A ----- is the average per unit voltage lost by each of the three phase voltages for the lowest qualifying. ſ 1 B) interruptions C)sag wind D) dip ice A)sag score 17. ----- is based on the mean value of the distribution of voltage THD measurements recorded for each circuit segment rather than the CP95 value. 1 A) SATDD **B)SATHD** C)SATSS D) voltage swell 18. The ------ are designed to assess the service quality for a specified circuit area 1 Γ A) rms variation indices B)maximum voltage indices C) Average voltage indices D) voltage sag 19. ----- to serve as metrics for quantifying quality of service. [] B) RVM C)RGM A) EPRI RBM D)ROG 20. STHD95 represent the CP95 value of a weighted distribution of the individual circuit segment CP95 values of voltage ----ſ 1 A) SDD B)TDD C) THD D)TDDs PRINCIPLES OF POWER QUALITY Page 19

				QUESTION BAN	К	2020
21.Digital monitoring	g instruments incorporat	e the use of _			[]
A)A to D 22.The frequency res	B)D to A sponse of a standard met	,	D)No V T depends		[]
A)Voltage 23.Some substations	B)Current use capacitively coupled	• • •	D) T	-	[]
A)Voltage reg C)Frequency			B)Voltage t D)All		F	
	g class C Ts are generall				L]
A)5KHz 25.Usually existing s	B)3KHz substation C Ts and V T	<i>,</i>	D)10		[]
A)PQ mainte C)PQ Consid	eration	D)Not		unloadad	г	1
A)distribution	rimary sites involve mon		ltimeters		.L]
C)Fault recor		D)A	11		[]
A)Offline 28. The new standard	B)Line analysis I format for interchangin		D)N ity data		_[]
, L	B)PQ DEF s which includes statistic	/	D)] maximum vo	•	urat	ion and
					[]
·	B)Transient frequency is structure into Lev		wer	D)Current	[]
A) one	B) Two		C) Three	D) Fiv	e	
31% of RMS v	ariator are no rectangula	r			[]
A) 20	B) 10	C) 30		D) 60		
32. RMS variations	is structure into Lev	vels			[]
A) one	B) Two		C) Three	D) Fiv	e	
33. SAR $Fl_x =$					[]
a) $\Sigma N_i/N_t$	B) $\Sigma N_i - 1/N_t$	c) ΣN	$i+1/N_t$	D) ΣN_i +1/N _{t-1}		
34. SARFI is us to d	lefine				[]
A) Threshold	as a curve		B) th	reshold as a valv	e	
PRINCIPLES OF POW	ER QUALITY					Page 20

			QUESTION BANK	20	20
C) Both A and E	3	D) N	None		
35. IEEE – 519 is the st	andard for			[]
A) Voltage harm	nonies B) Cu	urrent harmonies C) s	pikes D) sags		
36. Voltage magnitude	and transient magn	itude can be measure	s by	[]
A) Spectrum Ana	alyze	B) H	Iarmonic Analyze		
C) Disturbance A	Analyze		D) RMS meter		
37. Determine target per	formance levels ar	e targets that are appr	opriate ane economically	and []
A)Feasible	B)Unfeasible C)	Considerable D)N	Vone		
38.According to Detloff the Detroit Edison powe			cent of all the voltage sags	meas [ured by]
A)20,0.75PU	B)10,0.7PU	C)25,0.6PU	D)15,0.9PU		
39. An insurance scheme	e is considered	if the expected cost	t of claims equals		
the premiums paid.				[]
A) fair	B) unfair	C)feasible	D)none		
40. in RMS variations ag with in the control of the		nance efforts to	the number of fau	ts for [events]
A)Increase	B)Reduce	C)Constant	D)All		

UNIT –V Power quality enhancement using custom power devices 1. The concept of custom power was introduced [1 A) N. G. Hingorani B) David.N C) Nelson.F D) None 2. A unified power quality conditioner (UPQC) is a combination of Γ 1 B) shunt C) series and shunt A) series D) None 3. The network reconfiguration devices are usually called 1 A) series switchgear B)switchgear C)series and shunt switchgear D)None 4. The energy exchange between the series and the shunt device in a UPQC takes place [] through A) Inductor **B**)Resistor C) dc capacitor D)None 5. The compensating custom power devices are used for ſ 1 A) active filtering B) load balancing C) power factor improvement D)All 6. Which of the following are compensating custom power devices 1 Γ A) UPQC B) Solid State Breaker C) Static Current Limiter D)None 7. Which of the following are Network reconfiguring type custom power devices ſ 1 A) UPQC B) Solid State Breaker C) DVR D)None 8. Network reconfiguring type custom power devices that reduces fault current level by 1 inserting series inductance B) Solid State Breaker C) DVR D) Static Current Limiter A) UPQC 9. Which of the following is a high-speed switching device ſ 1 A) GTO B) MOSFET C)BJT D) Static Current Limiter 10. Which of the following is a high-speed switching power electronic controlling device [1 A) UPQC B) Solid State Breaker C) DVR D) Static Current Limiter 11. Dynamic Voltage Restorer is also called as Γ 1 A) series-shunt compensator B) shunt compensator C) static series compensator D)None 12. Which of the following devices is called as series voltage booster ſ 1 A) UPOC B) Solid State Transfer Switch C) DVR D) None 13. The number of GTO switches depends in a Static Current Limiter] A) rated peak power B) rated peak voltage C) rated peak current D) None

QUESTION BA	ANK 2	020
14. When a deep voltage sag or interruption is detected in this feeder, the load is quick	ly	
transferred to the alternate feeder. This switching action is called	[]
A) make-before-break B) make-after-break C) make-small-break D) I		1
15. The primary objective of a transfer switch is to protect a sensitive load from	[]
A) voltage sag/swell B) voltage interruption C) power interruption D)) None	
16.Which of the following are not compensating custom power devices	[]
A) UPQC B) Solid State Breaker C) DVR D)None		
17. Which of the following are not Network reconfiguring type custom power devices	[]
A) UPQC B) Solid State Breaker C) Static Current Limiter D)	None	
18. A solid state breaker can offer the following advantages	[]
A) limited fault current B) reduced switching surges C) power quality	D)None	
19. The most efficient and modern custom power device used in power distribution		
Networks	[]
A) UPQC B) Solid State Breaker C) DVR D)None		
20. DVR is a series connected custom power device, designed to inject a dynamically	[]
controlled		
A) voltage B) current C)power D)None		
21. DVR consists of an energy storage device, a boost converter (dc to dc), voltage sou	lrce[]
inverter, ac filter and coupling transformer, connected in		
A) parallel B) series C) series-parallel D)None		
22.DVR is a connected device	[]
A) shunt B) series C) combined series and shunt none D) none 23. Which of the following controller injects voltage in series with the line	[]
A) Series B) Shunt C) Series-Shunt D)None	L	-
	r	1
24. Which of the following controller injects current in to the system	[]
A) Series B) Series-Series C) Series-Shunt D) Shunt		
25. Which of the following controller provides more effective voltage control	[]
A) Series B) Shunt C) Series-Series D)None		
26. Which of the following device used for high power applications	[]
A) GTO B) Diode C) Thyristor D)BJT		
27. Which of the following controller more effective in current/power flow	Г	1
	[]
A) Shunt B) Series C) Series-Series D)None		

QUESTION B	ANK 2	020
28. Which of the following are sag mitigation devices	[1
A)DVR B)SSTS C) Active series compensators D)All of th	ie above	1
29.SSCL consists of a pair of opposite poled switches in parallel with the current limit]
A) Inductor Lm B) Capacitor Cm C)Capacitor Cs D)none	81	1
30. The current limiter is connectedwith the feeder such that it can restrict the cur	rrent in c	ase of
fault down stream	[1
A) shunt B) series C) combined D) none	L	1
31.In SSCL during healthy state condition the opposite poled switch remains—	[]
A)opened B) closed C) constant D)none	L	1
32. The SSTS is also called as	[1
A)STS B)TCR C) TSR D) none	L	1
33. The worlds first DVR was installed in the year	[1
A)1995 B) 1990 C) 2001 D) 2005	Ľ	1
34. The UPQC connected indifferent ways	[]
A) 2 B)3 C) 4 D)5	Ľ	1
35.Which company installed an indoor 15kv, 600A static transfer switch at industrial		
park in Columbus	[1
A) American electric power B) Edison company	Ľ	1
C) texas company D)none		
36. UPQC is a combination of	[1
A) SSSC, STATCOM B) TCR, TSR	Ľ	1
B)TCSC,TSSS D) TCSC,SSSC		
37. STATCOM generates/absorbs the	ſ	1
	-	-
A)Real power B) Reacive powe C) Both (A)&(B) D)None		
38. Which of the following device is more preferable for FACTS technology]	1
	L	
A)CSC B)VSC C)Both(A)&(B) D)None	e	
39. Which of the following device is more preferable for storage in FACTS technology	[]
A) Capacitors B)Inductors C)Batteries D)Super conducting mag	gnets	
40. The effective transmission impedance X_{eff} with the series capacitive compensation	[]
A) X-Xc B) X+Xc C) X/Xc D) None		

Prepared by:B RAMESH